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Abstract: Two suggestions are made to increase the efficiency and accuracy of ab initio optimization of molecular geometries. 
To improve the convergence of the optimization, a set of internal coordinates, the natural valence coordinates, is suggested. 
These coordinates originate from vibrational spectroscopy and reduce both harmonic and anharmonic coupling terms in the 
potential function as much as possible in a purely geometrical definition. The natural valence coordinates are local, eliminate 
most redundancies, and conform to local pseudosymmetry. Special attention has been paid to ring systems. A computer program 
has been included in our program system TX90 to generate the natural internal coordinates automatically. The usefulness 
of these coordinates is demonstrated by numerous examples of ab initio geometry optimization. Starting with a geometry 
preoptimized by molecular mechanics and using a simple diagonal estimate of the Hessian in conjunction with the GDIIS 
optimization technique, we usually achieved convergence in 8-15 steps, even for large molecules. It is demonstrated that, 
due to the reduction in anharmonic couplings, natural coordinates are superior to Cartesian or other simple internal coordinates, 
even when an accurate initial Hessian is available. Constrained optimization and the location of transition states are also 
discussed. The gradient optimization method has been generalized to handle redundancies; this is necessary in some complex 
polycyclic molecules and is illustrated on, among others, the porphine molecule. To increase the accuracy of relatively low-level 
calculations, empirical corrections to ab initio SCF geometries are suggested in the form of "offset forces" acting along bonds. 
We recommend offset forces for the most important bonds, to be used with the 4-21G(*) and the 6-3IG* basis sets. Based 
on 130 comparisons, the mean absolute error between theoretical and experimental bond lengths is reduced this way from 
0.014 to 0.005 A. 

I. Introduction 
There has been a fundamental change recently in the role that 

theoretical approaches play in chemistry. Due to the rapid de­
velopment in computer technology and the emergence of powerful 
program systems, quantum chemistry has become a practical tool 
for the chemical community. This refers not only to the wide­
spread semiempirical techniques but also to ab initio calculations 
which can be performed on widely available workstations. One 
of the most important applications is the determination of the 
equilibrium geometries of molecules. Such calculations are still 
fairly expensive and, except for the highest levels of theory, suffer 
from systematic errors. The present paper addresses these 
problems. 

Because of the high cost of quantum chemical calculations 
relative to other computational tasks, it is important to develop 
algorithms which require as few wave function evaluations as 
possible. Analytic gradient techniques1'2 have greatly increased 
the efficiency of geometry optimization. Analytic second deriv­
atives3,4 are also widely available now, but they appear to be too 
expensive if the only goal of the calculation is geometry opti­
mization. It will be demonstrated in the present paper that, using 
only gradient information, the convergence of geometry optimi­
zation can be significantly accelerated by the appropriate choice 
of coordinates used to describe the positions of the nuclei. A 
carefully devised system of curvilinear internal coordinates pro­
posed here has proved so useful that we suggest the name natural 
internal coordinates for them. The coordinates advocated here 
are a generalization of the ones suggested by us some time ago.3 

Their main disadvantages were the substantial human effort in­
volved in specifying them for program input and the fact that they 
were not defined for more complex molecules. We show here how 
the construction of natural internal coordinates can be automated 
and extend their definition to include, among others, fused cycles. 
All our demonstrations will be ab initio results, but the method 
itself could be useful for semiempirical calculations on large 
systems. 

We also consider the problem of the empirical correction of 
ab initio geometries. At the level applicable to larger molecules 
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(presently Hartree-Fock wave function with modest basis sets), 
the geometry parameters have significant errors which are, how­
ever, fairly systematic, in particular for bond lengths. Empirical 
corrections to Hartree-Fock bond lengths have been in use for 
some time.5,6"8 We propose here an alternative scheme in which 
"offset forces" are added to the calculated forces during geometry 
optimization. This results in a simpler and better defined cor­
rection for cyclic molecules. 

II. Theoretical Background 
We are concerned here with finding a local energy minimum 

from a reasonably close starting geometry. The existence of 
multiple minima is an important and largely unsolved problem 
in large, flexible molecules, but it is not the subject of the present 
paper. A necessary condition for a minimum on the potential 
energy surface is that it must be a stationary point, i.e., the gradient 
vector g must vanish. Whether a stationary point is a true local 
minimum or a saddle point can only be determined with certainty 
by checking the positive definite character of the second derivative 
matrix. However, several of the geometry optimization methods 
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offer reasonable, although not mathematically complete, guar­
antees that the points they converge to are minima. 

AU important gradient optimization schemes are based on the 
Newton-Raphson method. The basis of this is an expansion of 
the energy in a power series in the displacement coordinates A^: 

E = E0+ ZgMt + (1A)EF0AqAqJ + -

Truncating this expansion at the second order and minimizing 
with respect to Aq yields a system of linear equations which can 
be solved for Aq: 

Aq = - F ' g (1) 

In the above formulas, g is the gradient vector, g, = {dE/dqi), and 
F is the force constant matrix of Hessian, Fy = (d2E/dqjdqj). For 
a quadratic surface, eq 1 gives the exact solution in one step. In 
practice, the surface is not strictly quadratic, and eq 1 must be 
solved iteratively. The Newton-Raphson iteration is quadratically 
convergent but expensive, due to the need to evaluate the Hessian 
in every step. Replacing the Hessian by a reasonable approxi­
mation reduces the convergence to a linear one but is less expensive 
overall. Most modern methods try to use information obtained 
during the course of the iteration to improve the Hessian: these 
variable metric (or quasi-Newton) methods exhibit superlinear 
convergence. An excellent general discussion of optimization 
algorithms is given in Fletcher's book;9 Schlegel10 has also reviewed 
geometry optimization techniques. As the information collected 
during the iteration is, in general, insufficient to reconstruct the 
Hessian, it is difficult to assess the advantages of one algorithm 
over the other. The first methods widely used were the Mu-
rtagh-Sargent1' and the Davidon-Fletcher-Powell12 methods. 
More recently, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) 
procedure13 has been shown to perform well for geometry opti­
mization.14 The BERNY algorithm of Schlegel15 has also been 
widely and successfully used. In most of our optimizations we 
have used the GDIIS technique,16 a version of the direct inversion 
in the iterative subspace (DIIS) algorithm widely used to ac­
celerate the convergence of electronic wave functions. GDIIS tries 
to minimize the weighted gradient norm and can thus be used to 
find saddle points (see section VI). Most general optimization 
methods include a one-dimensional search step. These methods 
do not work too well in quantum chemistry because the cost of 
calculating the energy points is not much less than that of cal­
culating gradients. However, a one-dimensional search based on 
a cubic or quartic model, as suggested by Schlegel,15 is probably 
very useful. No one-dimensional searches were used in the present 
work, but we are in the progress of incorporating a similar strategy 
in our program. 

It is not the subject of the present paper to compare various 
optimization techniques. We have found, in agreement with 
others,17 that the GDIIS technique used here compares favorably 
with BFGS. Our conclusions, however, would remain valid using 
a different optimization method. In our opinion, the mathematics 
of the single-minimum optimization problem has been explored 
so thoroughly by now that further significant progress can only 
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be expected from incorporating a physical model, i.e., structural 
information, in the procedure. This simplest model serves to 
describe the atomic positions by a system of coordinates well 
adapted to the problem. 

The only general requirement for the coordinates q is that they 
afford a complete description of the molecular geometry. Most 
optimization techniques also require that the coordinates be 
nonredundant, i.e., that no relation of the form f\q^ q„) = 0 
exists. (We have found recently that gradient optimization can 
be generalized to redundant coordinates. Examples for this will 
be given in section VII, but the full discussion is postponed to a 
forthcoming paper.)18 Two sets of proper coordinates, which are 
related by a linear transformation, are obviously equivalent in 
gradient optimizations if the gradient and the Hessian are also 
correctly transformed. It may appear, therefore, that the only 
advantage of a well-chosen internal coordinate system is that it 
is easier to construct an empirical approximation to the Hessian 
in a valence-type coordinate set.19 As the following discussion 
concerning the use of Cartesian coordinates shows, this reasoning19 

is not valid, however, because it overlooks the role of higher order 
anharmonic couplings. 

The simplest choice of coordinates is Cartesian. The potential 
energy in Cartesian coordinates contains large couplings, both 
quadratic terms and higher order ones. Let us consider, for 
example, the internal rotation of the OH bond around the C-O 
bond in an alcohol. In rectilinear (Cartesian) coordinates, this 
rotation is accompanied by a stretching of the OH bond, causing 
a strong cubic coupling between the two modes. This geometry 
effect is absent in the curvilinear bond stretching and torsional 
coordinates. Due to the large couplings, a simple initial estimate 
of the Hessian F in Cartesian coordinates, such as the unit matrix 
sometimes used, is very poor and the algorithm needs many steps 
to build up a reasonable approximation to it. A better choice can 
be to estimate F from a lower level calculation or from an empirical 
force field (note that the latter are of course based on valence 
coordinates). If a good initial Hessian is used, then Cartesian 
coordinates should be nearly as good as any other coordinate 
system for small displacements, i.e., close to the equilibrium, where 
the higher order anharmonic terms are unimportant. Farther away 
from the equilibrium, however, the anharmonic couplings are very 
important. They can severely retard convergence in the early 
stages of iteration by preventing the agressive larger steps, par­
ticularly in systems with soft modes. They may even lead to 
divergence. Thus, in the general case, Cartesian coordinates are 
less effective even with a good initial Hessian because the higher 
order couplings are not accounted for. This statement will be 
supported by examples given in section V. 

Internal coordinates (bond stretchings, valence angle bending, 
out of plane deformations, and torsional angles) have been used 
in the theory of molecular vibrations for a long time20 and also 
in geometry optimization from the earliest applications of gradient 
theory.1 These coordinates minimize coupling, both harmonic and 
anharmonic, and therefore should work better in general for 
geometry optimization than Cartesian coordinates. There are two 
principal types of internal coordinate systems. The ones we ad­
vocate originate from vibrational spectroscopy and will be de­
scribed in detail in the next section. 

A much simpler choice of internal coordinates is used in the 
"Z matrix" method implemented in several major quantum 
chemistry programs like, e.g., GAUSSIAN,21 AMPAC,22 and 
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CADPAC.23 The Z matrix is a connectivity-type definition of 
the molecular geometry in terms of individual bond lengths, angles, 
and torsional angles. Its advantage lies in its relative simplicity 
when it has to be set up by hand. Although the Z matrix works 
reasonably well in many cases, particularly in open-chain mole­
cules, it should be realized that it was designed for input speci­
fication rather than specifically for geometry optimization. Ac­
cordingly, it is not the best choice. The treatment of rings is 
particularly unsatisfactory in that the last bond that closes a ring 
is necessarily missing. Even Cartesian coordinates may be a better 
choice for rings. A more versatile connectivity-type system is used 
in CADPAC,23 which has the option of a special ring-closure 
coordinate; this alleviates the problem but still does not preclude 
large couplings. For individual cases, like a planar six-membered 
ring, special coordinates have been proposed.17,24 Another un­
desirable property of the Z matrix coordinates is the nonsym­
metrical treatment of valence angles around a given central atom 
and of the torsional angles around a given bond. 

III. Natural Internal Coordinates 
We suggested a set of coordinates, based on those generally 

used in vibrational spectroscopy, some time ago.5 This was used 
in a number of ab initio vibrational studies8 which also included 
geometry optimization. We think that this system reduces the 
coupling of coordinates as much as possible with a general system 
based purely on the geometry. The subroutine that handles these 
coordinates has been incorporated in other programs, such as 
locally modified versions25 of GAUSSIAN, and TURBOMOLE.26 

It is a fairly complex system, however, and to set it up by hand 
requires too much effort for the large molecules which can be 
calculated now. We have therefore written a program (INTC) 
which generates internal coordinates automatically and included 
it in our ab initio program system TX90.27 A preliminary account 
of this program has been published earlier.28 Independently, a 
similar program has been implemented29 in the latest version of 
TURBOMOLE.26 

The system of internal coordinates we are proposing is based 
on three fundamental principles: locality, local pseudosymmetry, 
and the elimination of redundancy. Locality simply reflects the 
basic chemical picture of a molecule as being built out of bonds 
and groups of atoms fairly independent of the rest. Approximate 
local symmetry is used to eliminate local redundancies and to 
reduce couplings between coordinates centered on the same atom. 
However, global symmetry that would possibly connect coordinates 
at two far ends of a molecule is emphatically avoided. Our 
coordinates are best suited for organic molecules with a normal 
bonding pattern. They are not specifically adapted to unusual 
bonding situations, such as those occurring in transition states or 
in excited states. Nevertheless, they probably perform as well 
as any other system of coordinates for unusual bonding situations 
too, and better for spectator groups. It is clear that the present 
system is not applicable in every possible situation, and we are 
working on extending it. In particular, at present it is necessary 
to use redundant coordinates in some cases. 

In the following points we summarize the principles used to 
define the natural internal coordinates. Instead of giving detailed 
descriptions for various individual cases, we illustrate these 
principles in Table I for a few molecules, deliberately chosen to 
include several types of bonding situations. We also refer to our 
earlier paper,5 which is extended and slightly modified by the 
present definition. It is also likely that minor differences in the 
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definition of the coordinates would not change significantly the 
convergence behavior of geometry optimization. For simple linear 
chains and isolated rings, the coordinate system used is rigorously 
defined and is essentially the same as that in ref 5. We also 
illustrate extensions to more complicated systems. However, we 
do not define our coordinates in all possible situations, as it is 
possible that, as experience accumulates, our definitions may 
change slightly. 

1. The first step in the construction of natural coordinates is 
a topological investigation. For each atom, the coordination 
number (number of neighbors connected to it) is established. 
Atoms with one connection only are terminal atoms. An important 
step is the location of rings. After this, the nonterminal atoms 
form two basic groups, nonring (chain) atoms and ring atoms. 
At present, the maximum coordination number is 6 for chain 
atoms and, except for a few special cases like a silatrane type 
structure, 4 for ring atoms. 

Around each atom as a center, pseudosymmetry is defined in 
the following way. Terminal neighbors are considered as one set 
of equivalent atoms, nonterminal neighbors (connecting to the 
skeleton of the molecule) as another set of equivalent atoms. If 
the center is a ring atom, its ring neighbors form one set, and the 
substituents, whether of the same type or not, another set. For 
simplicity, let us consider only the two most important cases of 
four and three neighbors, respectively. A tetracoordinated center 
this way can have Td symmetry (all neighbors of the same type 
in the above sense), C3l} symmetry (one terminal and three non­
terminal neighbors or the reverse), or C2x, symmetry (two neighbors 
of each of the two types). Civ symmetry coordinates are used also 
in the Td case. For a tricoordinated atom the symmetry can be 
C3„ or C21,, but the coordinates will be different depending on 
whether the center is planar (quasi-planar) or not (see below). 
Pseudosymmetry is the basis of forming angle deformational 
coordinates below. Ring atoms are handled by special ring co­
ordinates (points 5 and 6) and, consequently, C211 symmetry is used 
for constructing the coordinates of the substituents on the ring 
atom (there can be one or two of them). 

2. Bonds are described by individual stretching coordinates. 
This is suggested by the generally low coupling between bonds 
(even in conjugated systems) and the fact that anharmonicity can 
be described in the most compact form in terms of individual 
bonds. Note that individual stretchings are used also in rings (see 
point 4 below). 

3. For bond angle deformations, the individual coordinates are 
bendings20 in the general case and linear bendings20 for linear or 
quasi-linear groups. From the individual coordinates, composite 
symmetrized coordinates are formed on the basis of idealized local 
symmetry described in 1. For example, for an sp3 methylene 
group, CH2, C211 symmetry coordinates20 are used which describe 
the "scissoring", "rocking", "wagging", and "twisting" motions (see 
a35~Q}s and ai9-qA2 for the methylene groups in the three-mem-
bered-ring part of the spiro compound la in Table I). Similarly, 
the definition of the methyl coordinates is based on C311 symmetry 
(see 943-̂ 47 for the methyl group attached to the five-membered 
ring in Table I). In the tricoordinated case one has to distinguish 
the planar or quasi-planar configuration from the pyramidal one. 
In the former case out-of-plane type bendings20 are also needed, 
and combinations are again formed according to symmetry.5 

Examples of the planar case with C211 local pseudosymmetry are 
given in Table I by the CH and C-Me rockings (in-plane bending 
combinations) and waggings (out-of-plane bending) of model la, 
see <727-<?34-

The use of linear combinations rather than individual bendings 
is a very important feature: the redundancy of angles around a 
central atom is removed this way; also, the couplings in the force 
constant matrix between these coordinates are relatively small 
even in the absence of true symmetry (the latter would render 
all couplings between the above types of coordinates zero by 
symmetry). We note parenthetically that the coordinates used 
are not strictly orthogonal to the exact redundancies. There is 
no such theoretical or practical requirement, although the re­
dundancy should be roughly orthogonal to the space of the co-
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Table I. Natural Internal Coordinates for the Model Molecules in Figure 1" 
4-Methylspiro[2.4]hepta-2,4-diene (la) 

9t-9,9: Individual Bond Stretchings. 920~923: Five-Membered Ring Coordinates as Defined by Eq 2 in the Text 

descr coeff type atoms descr coeff type atoms 
924 
ring-
ring 
rock 

925 
ring-
ring 
wagg 

926 
ring-
ring 
twist 

927 
CH rock 

928 
CH wag 

929 
CH rock 

930 
CH wag 

931 
C-Me rock 

932 
C-Me wag 

933 
CH rock 
934 
CH wag 

935 
CH2 
sciss 

+1 
+1 

+1 

+1 

+1 

+1 

_1 

-\ 

-1 

-1 

4 

bend 

bend 

bend 

bend 

out 

bend 

out 

bend 

out 

bend 

out 

bend 

2,6, 1 
5.6, 1 
2.7, 1 
5,7, 1 

2,6, 1 
5.6, 1 
2.7, 1 
5 ,7 ,1 

2,6, 1 
5.6, 1 
2.7, 1 
5,7, 1 

1,9,2 
3 , 9 , 2 

9, 1, 3, 2 

2, 10, 3 
4, 10, 3 

10, 2, 4, 

5 ,8 ,4 
3 , 8 , 4 

8, 5, 3, 4 

1, H . 5 
4, 11,5 

11, 1,4, 

12, 13,6 
12, 1,6 
12, 7, 6 
13, 1,6 
13,7,6 

936 
CH2 
rock 

937 
CH2 
wag 

938 
CH2 
twist 

943 
CH3 
s def 

944 
CH3 
as def 

943 
CH3 
as def 

946 
CH3 
rock 

947 
CH3 
rock' 

948 
CH3 
torsion 

1 bend 

-1 
-1 

1 bend 
-1 

-1 

1 bend 
-1 
—1 

12, 1,6 
12,7,6 
13, 1,6 
13,7,6 

12,1,6 
12, 7, 6 
13,1,6 
13,7,6 

12, 1,6 
12, 7, 6 
13,1,6 
13, 7, 6 

939~942: CH2 deformations around C7, 
analogous to 935-938 

1 bend 

-1 
-1 
-1 

2 bend 
-1 
-1 

1 bend 
-1 

2 bend 
-1 
-1 

1 bend 
-1 

1 tors 

at C6 above 
17, 18,8 
16, 18, 8 
16, 17,8 
4, 16, 8 
4, 17, 8 
4, 18, 8 

17, 18,8 
16, 18, 8 
16,17,8 

16, 18, 8 
16, 17,8 

4, 16, 8 
4, 17, 8 
4, 18, 8 

4, 17, 8 
4, 18, 8 

16, 8, 4, 3 
17, 8, 4, 3 
18, 8, 4, 3 
16, 8, 4, 5 
17, 8, 4, 5 
18, 8, 4, 5 

SiX' 

Skeleton of Bicyclooctane (lb)4 

9, - 99: Individual Bond Stretchings. 910-915 and <7,6, <?n: 
Membered Ring and Four-Membered Ring Coordinates, Respectively, as Defined by Eq 2 in the Text 

descr coeff type atoms 
9l8 
butterfly 

1 
-1 

tors 4, 5, 6, 7 
8, 5, 6, 1 

Skeleton of Propellane (lc)c 

9i~9i0: Individual Stretchings. 9u-9i6: Four-Membered Ring Coordinates as Defined by Eq 2 

descr coeff type atoms descr coeff type atoms 
9n 2 tors 2, 3,4,5 9,8 1 tors 

-2 6, 3,4, 1 -1 
-1 2, 3,4, 7 -1 
+ 1 8,3,4,1 +1 
-1 8, 3, 4, 5 
+ 1 6, 3, 4, 7 

Butyrolactam Dimer (Id) 
Only the Coordinates Describing the Relative Motions of the Subunits Are Listed 

2, 3, 4, 7 
8, 3, 4, 1 
8, 3, 4, 5 
6, 3, 4, 7 

descr 

967 

968 

969 

coeff 

-1 

type 

stre 

stre 

bend 

atoms 

14,6 

13, 12 

6, 12, 13 
14, 13,6 
12,6, 14 
13, 14, 12 

descr 

970 

971 

coeff 

1 
-1 

1 
-1 

1 
-1 

type 

tors 

tors 

atoms 

12, 13,6, 14 
13,6, 14, 12 
6, 14, 12, 13 
14, 12, 13, 6 

2, 6, 13, 12 
1, 13, 6, 14 

972 1 
-1 

tors 8, 12, 14,6 
7, 14, 12, 13 

"Coordinates were generated by the INTC routine of TX90 (ref 27), their format was edited for this paper. In general, a coordinate is the linear 
combination of several individual coordinates, the latter of the type used in vibrational spectroscopy, see, e.g., ref 20. The individuals are defined by 
type in column 3 and the atoms participating, column 4 (note that for bend types, the last index refers to the central atom). The coefficients as listed 
in column 2 are relative values only, they are normalized in the program. 'Relative motion of the two rings. 'Relative motions of the rings. 
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ordinates, to avoid close linear dependencies. 
The composite bending coordinates are normalized by the 

spectroscopic convention, (Ec,2)"1 /2- Although we avoid global 
symmetry in the construction of the coordinates, the program tries 
to choose the orientation20 of degenerate type coordinates (e.g., 
in the Ci0 case) so that symmetry is maintained. 

4. The relative torsional motion around an X-Y bond is de­
scribed by the sum of all torsional angles A1-X-Y-B7. Nor­
malization here, contrary to the bendings, is l/n, which is more 
consistent with the form of potential for torsions. It is important 
to define torsions in this symmetrical way, as internal rotation 
is frequently a source of convergence difficulties in geometry 
optimization. A minor complication with torsions is their mul­
tivalued nature: a small change during optimization may appear 
as a sudden jump if the zone limit is crossed. This is recognized 
by the program and handled appropriately. 

5. Rings, except for macrocycles, are considered as a local 
grouping, and in the construction of the coordinates use is made 
of the idealized highest symmetry, D„h. The treatment of rings 
is the weakest point in many optimization procedures, and we think 
that the following scheme is one of the most important features 
of the present method. In the original formulation5 we gave 
explicit definitions for rings of up to six atoms only. The following 
is a general definition for rings of any size. However, for large 
macrocycles, we recommend the use of redundant internal co­
ordinates. 

An n-membered ring has 3« - 6 degrees of freedom which we 
describe by n individual stretchings, n - 3 symmetrized bendings, 
and n - 3 symmetrized torsions. The symmetrized deformational 
coordinates are obtained from group theory as 

S% = Lcos \(k -l)m2T/n\qk (2a) 
* - i 

Sb„=Esm\(k-\)m2ir/n}qk (2b) 
/t-i 

where qk denotes the individual bendings or torsions, respectively, 
and m refers to the symmetry species under the Dnh point group; 
m = 2,[n/2], where [n/2] is the integer part of n/2. The values 
m = 0 and I correspond to redundancies and are excluded. 

6. Polycyclic systems can present the greatest difficulties, and 
in the general case we have to use redundant coordinates (section 
VII). However, in the most important cases we can exclude 
redundancy as described in the following examples. 

(a) Fused rings sharing one edge, such as naphthalene or 
phenanthrene, or in general, [n.m.O] type bicyclic systems, require 
(beyond the internal coordinates for each ring separately as de­
scribed in point S) a special coordinate that describes the relative 
motion of two adjacent rings. We call this coordinate "butterfly", 
and it is defined as the difference of two appropriate torsions 
around the annelation bond. It is demonstrated by the example 
of qxi for bicyclooctane in Table I. 

(b) Bicyclic systems of the general [n.m.k] type with k (greater 
than zero) atoms in the bridge, like norbornane (bicyclo[2.2.1]-
heptane), are more complicated. We recommend using the ring 
coordinates of the two rings, with (n + k + 2) and (m + k + 2) 
atoms, in the norbornane case two five-membered rings. This 
introduces redundancy and will be discussed in section VII. 

(c) For propellane type tricyclic systems there are two special 
coordinates describing the relative orientation of the ring planes. 
These are constructed as appropriate combinations of torsional 
coordinates around the common edge, using C3 symmetry around 
that bond. An example is given by qv and qti for [2.2.2]propellane 
in Table I. We used this system with good success also in a 
silatrane derivative, defining the Si-N partial bond as a true bond. 

(d) In spiro systems the relative motions of the two rings can 
easily be described by coordinates of the regular type rocking, 
wagging, and twisting, defined around the spiro center atom. For 
the spiro compound in Table I, these are given by q2^ q^, and 
•726-

For polycycles more complicated than the cases listed above, 
the simplest solution is probably to accept redundant coordinates, 

J. Am. Chem. Soc, Vol. 114, No. 21, 1992 8195 

H,. 

1b 
1a 

1c 1d 

Figure 1. Numbering of atoms in the models used to illustrate the 
definition of natural internal coordinates in Table I. Hydrogens are 
indicated only if used in Table I. Ia: 4-Methylspiro[2.4]hepta-2,4-diene. 
Ib: Bicyclo[4.2.0]octane. Ic: [2.2.2]Propellane. Id: The hydrogen-
bonded dimer of 7-butyrolactam. 

after excluding the local angle and ring redundancies. 
7. Supermolecules, ensembles of molecules connected by 

relatively weak bonds like H-bonds, need special treatment. 
First, the obvious task is to recognize the hydrogen bond. In 

our INTC routine this is now controlled by the input. (As a special 
option, any atom pair can be defined as bonded.) The less obvious 
second question is to find the "natural" coordinates. At present 
we can handle two cases. 

(a) In the case of one H-bond, the system is treated simply as 
a supermolecule with the regular coordinates around the H-bond. 
Obviously, the X - H - Y bending and especially the torsion around 
H - Y are extremely loose coordinates. This may necessitate special 
optimization techniques like constrained optimization along the 
soft mode as discussed in section VI. 

(b) A fairly important situation is two H-bonds forming a ring 
as in the case of the butyrolactam dimer, Figure Id. One possible 
choice would be to use the eight-membered ring that appears to 
be due to the H-bonds, but this leads to extremely loose coor­
dinates. We have found that the system as given in Table I 
performs quite well. In essence, the relative orientation of the 
two submolecules is described by the angular coordinates of the 
four-membered ring formed by the oxygens and the hydrogens 
and two butterfly type coordinates. 

The above considerations assume weak but still reasonable 
bondings between the subunits. The extreme case of almost 
independent molecules within a cluster, where the individual 
molecules undergo large-amplitude translational and rotational 
motion, needs special techniques as discussed recently by King.30 

IV. Computational Details 
This section summarizes the computational details used to obtain the 

examples in the next section. Based on the principles outlined above we 
have now a well automated, easy-to-use scheme for large-scale ab initio 
geometry optimizations as part of the program system TX90.27 The 
natural internal coordinates are generated by the INTC subroutine in a 
format read by BMAT, the subroutine that makes the transformation of 
the gradient from Cartesian to internal coordinates. This may be of 
interest because the original BMAT31 has been incorporated into several 
major quantum chemistry program systems. INTC also produces a guess 
of diagonal force constants, taken simply from basic molecules with 
known force fields. If a better estimate (e.g., a semiempirical force field) 
is available, a more general Hessian can be specified. However, in all 
the examples in this paper the default simple diagonal Hessian guess was 
used, in conjunction with the GDIIS optimization technique.16 In some 
cases we tried to combine GDIIS with the BFGS updating method," but 
no further improvement was obtained. 

The starting geometries were obtained in almost all cases by PCMO-
DEL,32 a commercial program that uses the MMX force field of Ga-

(30) King, H. F. J. Phys. Chem. 1990, 94, 5617. 
(31) Meyer, W.; Pulay, P. MOLPRO, Stuttgart-Munchen, 1969. 



8196 J. Am. Chem. Soc, Vol. 114, No. 21, 1992 Fogarasi et al. 

Table II. Examples for the Convergence of Geometry Optimizations Using Natural Internal Coordinates" 

molecule* notes'' cycle 
SCF 

energy"* 
max 

force' 
max 

coord change' 

N-f ert-butyl-2-propen-1 -imine (2a) 

4-methylspiro[2.4]hepta-2,4-diene (la) 

1,4,5-trihydroxyanthraquinone (2b) 

cw-bicyclo[4.2.0]octane (lb) 

oxocane, conformer TC (2c) 

4-hydroxybenzoic acid, 4-carboxyphenyl ester (2d) 

retinal, protonated Schiff base (2e) 

bicyclo[2.2.1]heptane (norbornane) (2f) set Af 

7-butyrolactam, H-bonded dimer (Id) 

bicyclo[2.2.1]heptane (norbornane) (2f)' set B* 

porphine (2g)' 

" = 34 (C1) 
std 

n = 48 
STO-3G, no offs 

n = 51 
4-21(*), no offs 

n = 60 
std 

n = 60 
std 

n = 81 
std 

n= 147 
std 

« = 1 5 (C211) 
6-31G*, no offs 

n = 72* 
4-21(*), no offs 

« = 1 5 (C20) 
6-31G*, no offs 

" = 37 (C20)* 
4-21G(*), no offs 

1 
6 

1 
7 

1 
9 

1 
8 

1 
8 

1 
13 

1 
14 

1 
8 

1 
15 

1 
5 

1 
8 

-326.383 832 
-326.394729 

-304.829079 
-304.991912 

-907.271418 
-907.314952 

-310.429 522 
-310.441510 

-347.350152 
-347.358 044 

-908.448 124 
-908.478933 

-827.331265 
-827.335 300 

-272.052650 
-272.061 190 

-568.598 605 
-568.626923 

-272.052650 
-272.061 192 

-981.241288 
-981.278110 

0.1500 
0.0008 

0.9126 
0.0044 

0.2945 
0.0023 

0.1412 
0.0001 

0.0936 
0.0003 

0.2149 
0.0002 

0.4340 
0.0007 

0.1842 
0.0004 

0.4156 
0.0003 

0.1693 
0.0006 

0.4303 
0.0030 

0.1500 
0.0004 

0.3000 
0.0009 

0.2667 
0.0009 

0.3000 
0.0001 

0.0681 
0.0021 

0.3000 
0.0052 

0.3000 
0.0009 

0.1842 
0.0001 

0.3000 
0.0073 

0.0583 
0.0004 

0.1209 
0.0008 

" Besides the last converged cycle, characteristics for the first step are also listed to indicate the distance from the optimum. The starting geom­
etries were taken from molecular mechanics (refs 32, 33) optimization, using the commercial program PCMODEL (ref 32). *See also the figures. 
cn gives the number of degrees of freedom (variable parameters); unless otherwise indicated, no symmetry was applied. The standard case is 
indicated by std; 4-21G(*) basis used with offset forces (see text). In other cases, the basis set is given and no offs stands for no offset forces used. 
''Energy in atomic units; when using offset forces, this is slightly different from the SCF minimum. 'Along the internal coordinates, in units of aJ/A 
or aJ/rad; note that in atomic units these figures would be smaller by almost an order of magnitude. ' I n angstroms or radians; maximum change 
limited to 0.3. *Two different coordinate systems tested, see text. * For the present test a simple RHF wave function was used, and that gives this 
symmetry; note, however, that an MCSCF wave function may be necessary to obtain the correct electronic structure. 'Optimizations using redundant 
coordinates. 

jewski and Gilbert. MMX is based on the MM2 force field of Allinger 
and co-workers.33 The graphical input in PCMODEL, as well as the 
easy visualization of the results, proved very important in improving 
productivity and avoiding errors. Our input also has interfaces to several 
major quantum chemistry programs, e.g., AMPAC.22 We have found 
that the MMX geometries are very good in most cases but still far 
enough from the ab initio ones to serve as realistic tests of the optimi­
zation procedure. In general, the deviation between the MMX and the 
final optimized ab initio geometries was a few hundredths of an angstrom 
for bond lengths, a few degrees for bond angles, and up to 10° and more 
for torsions. 

Except for the transition state for the dissociation of the /erf-butoxy 
radical, we used the simple restricted Hartree-Fock (RHF) theory. In 
the examples of sections V-VII, the only purpose was to study the con­
vergence behavior of the geometry optimization; the quality of basis sets 
is ad hoc, varying from the simplest STO-3G to the large 6-31IG**.34 

Otherwise, however, we consider two pairs of basis sets as especially 
suitable for the purpose of large-scale geometry optimizations. These 
were used consistently in the determination of bond lengths in section 
VIII. Both are relatively simple and of the split-valence type. The 
4-21G(*) set is the set that we consider as standard for use on first-row 
atoms in large molecules. This is the original 4-21G basis,5 augmented 
with a set of five d functions of exponent 0.8, applied uniformly on 
nitrogen, oxygen, and fluorine (but not on carbon). The use of d func­
tions on atoms with lone pairs is justified by the well-known experience 
that they improve the description of angle deformations. For second-row 
elements the corresponding basis set we use is the 3-3-21G(*) set (with 
6-component d functions, consistent with the original definition35). In 

(32) PCMODEL, Molecular Modeling Software. Serena Software, Box 
3076, Bloomington, IN, 47402-3076. Copyright 1987, 1988, 1989, 1990. 

(33) (a) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127. (b) Allinger, 
N. L.; Yuh, Y. H.; Lii, J.-H. J. Am. Chem. Soc. 1989, 111, 8551 and ref­
erences therein. 

(34) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio 
Molecular Orbital Theory; Wiley: New York, 1986. 

(35) (a) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, 
W. J. J. Am. Chem. Soc. 1982, 104, 2797. (b) Pietro, W. J.; Francl, M. M.; 
Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S. / . Am. Chem. Soc. 
1982, 104, 5039. 

special cases, especially in strained systems, use of the larger 6-3IG* basis 
set36 may be necessary. All optimizations in section VIII were carried 
out with both the 4-21G(*) and the 6-3IG* sets. 

V. Examples of Geometry Optimization 
Several test examples of optimization are given in Table II. 

Beside the converged last step, characteristics of the starting first 
step are also listed; this gives an estimate of what distance the 
optimization had to cover. Details of the optimization history are 
available upon request from the authors. As convergence criterion 
the maximum value of the following quantity proved useful; A£,-
= [/2<Pj&qi, where <p is the force, and Ag is the coordinate change. 
In the examples given, a threshold of 10"* aJ was used. This is 
a fairly strict limit and may not always be necessary. With this 
criterion, the total energy is usually accurate to better than 10"s 

au. Note that in most cases we applied empirical corrections to 
the forces acting along bond stretching coordinates (see section 
VIII), and therefore it is the corrected SCF energy, not the SCF 
energy itself, which is minimum at the converged geometry. 

The first example in Table II, a propenimine derivative (2a), 
was included to show a typical "easy" case of a relatively small 
and, due to the planarity constraint for the conjugated chain, fairly 
rigid molecule. Convergence in six steps is, in fact, not surprising. 
The next example, the spiro compound la that was the prototype 
to show the basic types of natural coordinates in Table I, would 
be a very difficult case with traditional techniques: although it 
is a rigid system, its topology is complex. The rapid convergence 
we obtained for this complicated ring structure can definitely be 
ascribed to the use of the natural coordinates. The third example, 
an anthraquinone derivative (2b), was inspired by the thorough 
study of optimization techniques at the semiempirical level by 
Cummins and Gready.17 These authors found this molecule to 

(36) (a) Hariharan, P. C; Pople, J. A. Chem. Phys. Lett. 1972, 66, 217. 
(b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. 
S.; DeFrees, D. J.; Pople, J. A. / . Chem. Phys. 1982, 77, 3654. 
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Table IH. Comparison of Geometry Optimization in Internal and Cartesian Coordinates 

molecule 

acrolein 
start' 

ethanol 
start 

ACTHCP' 
start 

Acyglyll ' 
start 

Acyglyll* 
start 

basis set 

4-21G(*) 

STO-3G 

3-21G 

STO-3G 

3-2IG 

A™ 

6 

5 

13 

8 

9 

natural internal coordinates 

/ 
0.0005 
0.8378 

0.0007 
0.5179 

0.0004 
0.4275 

0.0003 
0.6257 

0.0002 
0.3448 

hcf 

0.0002 
0.0931 

0.0004 
0.0968 

0.0016 
0.2292 

0.0072 
0.2078 

0.0083 
0.1181 

EM (au) 

-190.363 828 
-190.349 607 

-152.132673 
-152.125212 

-844.540 842 
-844.514066 

-428.943 235 
-428.921 062 

-432.194509 
-432.185 115 

Cartesian coordinates 

basis 

d 

STO-3G 

STO-3G 

STO-3G 

STO-3G 

N" 

26 

23 

90 

66 

66 

ref 

14 

40 

40 

40 

40 

2e 

2d 

A 
2f 2g 

"Number of steps required for convergence. In the Cartesian case, if several optimizations were quoted, the lower value is shown. 'Maximum 
internal force (in aJ/A or aJ/rad) in the last step, and (below) maximum internal force in the first step. c Maximum geometry change (in A or rad) 
in the last step, and (below) maximum geometry change in the first step. ''The quantum chemical method is not specified in ref 14, but it is believed 
to be a semiempirical technique. 'For acrolein, PCMODEL gave an improbably short C-C single bond distance, 1.357 A. We believe that this is 
due to a program error, as the result depends on the numbering of the atoms. ^C5H6N2O2S, a bicyclic sulfur-containing imide, see ref 40. 
'Acetylglycine, see ref 40. The data shown are for the extended conformer; it is not clear what conformer is shown in ref 40. 

be a difficult case: no convergence could be achieved with Z 
matrix coordinates, and 53 steps were needed with their special 
coordinates. We obtained very strict convergence in just nine steps, 
showing that the natural coordinates are well adapted to the 
system. This molecule is planar and quite rigid. A similar but 
more flexible, nonplanar system can be a greater challenge. A 
case of the latter type is bicyclooctane (lb). Still, convergence 
is rapid in just eight steps. The next example, oxocane (2c), is 
a very flexible eight-membered ring. Here we show only one of 
its conformers, the twist-chair form. An experimental-theoretical 
study of its conformations will be published separately.37 Con­
vergence again is achieved in eight steps; the fact that the MMX 
geometry is a good approximation of the ab initio one helps, of 
course. 

Convergence for the ester dimer of p-hydroxybenzoic acid (2d) 
is rather slow, in 13 steps. Details of the process not reproduced 
here show that the primary parameters converge rapidly, and the 
second half of the cycles is spent optimizing torsions, particularly 
the one around the oxygen in the ester bridge and the aromatic 
carbon, see Figure 2. This case is difficult because the potential 
is flat and the three single-bond torsions in the ester bridge are 
strongly coupled. A more sophisticated line search algorithm could 
accelerate convergence in such cases. Clearly, the physical sig­
nificance of the minimum energy geometry becomes questionable 
for such very flat potential surfaces. In this case, our starting 
MMX geometry differed from the final one by 8° for the C-O-C 
angle, and by 30° for the C(phenyl)-C(carbonyl) torsion. 

Our last regular example is the protonated Schiff base of retinal 
(2e). This is a molecule with 147 independent geometry param­
eters, several of them soft torsional modes. Considering the large 
(35°) changes in some torsional angles, convergence in 14 steps 
is quite reasonable. 

Two further, more experimental results are also given in Table 
II. One of them is the set A calculation for norbornene (bicy-
clo[2.2.1 ]heptane). As explained in section III, we have no unique 
nonredundant ring coordinates for such a system. In set A we 
introduced an imaginary bond between the bridgehead atoms, 
creating a propellane-like system. This scheme worked well, 
needing eight steps for convergence. However, the use of re­
dundant coordinates (set B, discussed in section VII) seems 
preferable. Another example illustrates the handling of inter-
molecular hydrogen bonds as discussed in section IH. The model 
is the hydrogen-bonded dimer of butyrolactam (Id), brought to 
our attention by Professor S. Saebo.38 This is a challenging system 
because the relative motion of the two monomers is very floppy. 
In particular, the force constants corresponding to the relative 
orientation of the monomers (coordinates q6g to q12 in Table I) 
may be of the order of 10~2 aJ/rad2. Convergence was obtained 

Figure 2. Molecules used to study the convergence behavior of geometry 
optimization (Tables II and III). 2a: ./V-tert-butyl-2-propen-l-imine. 2b: 
1,4,5-Trihydroxyanthraquinone. 2c: Oxocane, a twist-chair conformer. 
2d: 4-Hydroxybenzoic acid, 4-carboxyphenyl ester. 2e: The protonated 
Schiff base of retinal. 2f: Bicyclo[2.2.1]heptane (norbomane). 2g: 
Porphine. 

in an acceptable 15 steps. However, details not listed show that 
the last six steps were spent in optimizing the same coordinate. 
This again points to possible improvements in our interpolated 
line search algorithm. The final geometry has C2 symmetry, 
although this was not imposed. There are large differences in this 
case between the starting MMX and the final geometry: the O - H 
distances change by 0.2 A, and the angles and torsions in the 
four-membered ring change by about 10° and 20°, respectively. 

Comparison with Cartesian Coordinates. Cartesian coordinates 
are much simpler than interval coordinates, and it has been claimed 
that they are completely equivalent14'19,39 or even superior40 to 
them. As discussed in section II, Cartesian coordinates are 
equivalent to internal coordinates only for very small displace­
ments, i.e., near to equilibrium. Baker and Hehre40 identify 
internal coordinates with the Z matrix coordinates. With this 
limited interpretation, they are correct that Cartesian coordinates 
are superior to the latter, for rigid rings. Even so, for chain 
molecules, where the performance of Z matrix coordinates is 
adequate, this is no longer true. In the general case, however, 
we are convinced that Cartesian coordinates cannot compete with 
a well selected system of internal coordinates, like the natural 

(37) Taylor, P. W.; Meyer, W. L.; Pulay, P. To be published. 
(38) Saebo, S., Mississippi State University, private communication. 

(39) Head, J. D. J. Comput. Chem. 1990, / / , 67. 
(40) Baker, J.; Hehre, W. J. J. Comput. Chem. 1991, 12, 606. 
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Table IV. Determination of a Transition State for the »er*-Butoxy Radical" 

1. Constrained Optimizations along the Reaction Coordinate Q = C1—C2 (Theory: UHF, 4-21G) 

fixed value 
of Q (A) 

2.037 

1.837 

2.237 

cycle 
i 
1 
7 
5 

8 

energy (au) 
E 

-230.973 515 
-230.993 852 

-231.017429 

-230.988 263 

2. Unconstrained Optimizat 

max force 
(aJ/A)» * 

0.1810 
0.0001 

0.0022 

0.0020 

ion Started with the 

max coord, change4 

(A or rad) Aq 
0.1717 
0.0006 

0.0016 

0.0010 

Geometry Obtained for C 

selected geometry 
parameters (A or deg) 

C2-03 03 out' 
Rl 9 

1.359 36.3 

1.434 47.9 

1.277 20.9 

? = 2.237 A, Above: 

C1-C2 
Q 

d 
d 
d 

The Last Step is the Transition State (UHF, 4-21G) 
1 

1 
7 

theory 

E ip Aq Rl 8 
-230.988 263 0.0270 0.0135 
-230.988176 0.0003 0.0004 1.286 22.6 

3. Unconstrained Reoptimizations of the Transition State at Higher Levels of Theory 
i E <p Aq Rl Q 

Q 

2.210 

Q 
UNO-CAS 
4-21G 
UNO-CAS 
6-31G* 
UNO-CAS 
6-311G** 

1 
7 
1 
8 

1 
7 

-231.012518 
-231.011431 

-231.514031 
-231.512751 

-231.574861 
-231.574874 

0.1000 
0.0008 

0.5052 
0.0006 

0.0557 
0.0003 

0.0494 
0.0005 

0.0622 
0.0007 

0.0062 
0.0007 

1.288 

1.259 

1.256 

25.5 

28.2 

28.7 

2.155 

2.067 

2.052 
"See Figure 3 (C2 is the central carbon, Cl is being moved). * Excluding the force along the frozen coordinate; absolute values given. cThe angle 

between bond C2-03 and plane C5-C2-C4 (Figure 3), indicating the pyramidal character of the grouping. d Constrained reaction coordinate, see 
first column. 

coordinates. We optimized some of the more difficult cases given 
in refs 14 and 40 using natural coordinates and compare the 
convergence with that of the Cartesian coordinates in Table III. 
The results in this table are not fully conclusive, as the starting 
geometries are not specified in refs 14 and 40, the initial Hessian 
is different, and in some cases our quantum chemical method is 
different. Nevertheless, it is apparent that all these difficult cases 
are handled quite efficiently by natural internal coordinates. To 
characterize the quality of the starting geometry, we have included 
the maximum force and geometry change components and the 
total energy in the first step. Table II offers further well-defined 
cases for future comparison. 

VI. Constrained Optimization and Transition States 
One of the advantages of internal coordinates is that constraints 

(which are naturally formulated in internal coordinates) can easily 
be imposed. This can be done only in an approximate way by 
using projection operators if the optimization itself is carried out 
in Cartesian coordinates.2,41 

Constraints can be introduced for several purposes. In systems 
with an extremely weak coordinate the surface may be so an-
harmonic that a minimum can be found only by fixing the floppy 
coordinate at several values and reoptimizing the remaining co­
ordinates at each of these values. A more important application 
is the search for transition states. If the reaction coordinate can 
be approximately identified in advance, then optimizing the 
structure along the reaction path, at fixed values of the putative 
reaction coordinate, offers a straightforward way of finding the 
transition structure.19 As discussed in section II, the GDIIS 
procedure16 can be used to find transition states, if the search for 
stationary points is started in the vicinity of such a saddle point. 
Constrained optimization with reaction coordinate driving is 
usually successful to locate the transition region. Calculating 
energy profiles along the reaction coordinate, without reoptimizing 
the remaining degrees of freedom, is seldom meaningful because 
of the strong coupling of the coordinates in the transition-state 
region. 

Table IV shows the steps used to find the transition state for 
the dissociation and the terr-butoxy radical to methyl radical and 

(41) Lu, D. H.; Zhao, M.; Truhlar, D. G. J. Comput. Chem. 1991,12, 376. 

Figure 3. The dissociation of tert-butoxy radical into acetone and methyl 
radical (Table IV). 

acetone. The first set of calculations was performed at the un­
restricted Hartree-Fock (UHF) level, with the 4-21G basis set. 
The reaction coordinate Q is the C1-C2 bond (see Figure 3), and 
C, symmetry was assumed throughout. In step 1, constrained 
optimization was carried out at Q = 1.837, 2.037, and 2.237 A. 
Convergence was achieved in five to eight cycles. A plot of these 
adiabatic energies as a function of Q indicated that the point at 
«2 = 2.237 A is close to the estimated transition state. An un­
constrained optimization started from this point (step 2) converged 
to the saddle point in seven steps. Using the 4-21G UHF geometry 
as a starting point, the saddle point was redetermined at pro­
gressively higher levels of theory, at the 3X3 unrestricted natural 
orbital—complete active space42 (UNO-CAS) level with the 
4-21G, 6-31G*. and 6-31IG** basis sets. The UNO-CAS42 

method is an efficient way to obtain a close approximation to the 
CAS-SCF43 wave function and is particularly appropriate for 
transition states. Table IV includes a few important, geometry 
parameters; it is interesting to observe the shortening of the C-O 
bond and the flattening of the acetone moiety as the methyl group 
is leaving. 

(42) Bofill, J. M.; Pulay, P. J. Chem. Phys. 1989, 90, 3637. 
(43) (a) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 

48, 157. (b) Ruedenberg, K.; Sundberg, K. R. In Quantum Science; Calais, 
J.-L., Goscinski, O., Linderberg, J., Ohm, Y., Eds.; Plenum: New York, 1976. 
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VII. Optimization Using Redundant Coordinates 
In some cases of complex molecular topology, it is difficult to 

avoid redundant coordinates, and our program in its present form 
generates more internal coordinates than required. The advantage 
of redundant coordinates is that the force field is often more 
diagonal in a redundant set; this has been well-known to spec-
trocopists and was recommended by Schlegel to generate Hessians 
for the Z matrix coordinates.24 We have recently succeeded in 
generalizing the geometry optimization procedure to the case of 
redundant coordinates. We believe that our formulation, which 
will be described in detail elsewhere,18 has both practical and 
theoretical advantages over the transformation method of 
Schlegel,24 although it is based on the same principle. 

Two examples are shown at the end of Table II. As in all cases 
discussed in the previous sections, the Hessian F was the diagonal 
guess given by the INTC subroutine. In the present case, however, 
this refers to a redundant coordinate system, so that the true F, 
in a nonredundant set, is not diagonal. In the first example, that 
of norbornane (2T), the redundant coordinates (referred to as set 
B) are based on a scheme that uses ring coordinates for the 
six-membered ring only, treating the bridge as a chain. This results 
in 57 coordinates instead of 3JV- 6 = 51. With set B convergence 
is achieved in five steps. This is faster than with set A (section 
V) which needed eight steps. 

The second example in Table II is porphine, C20N4H14 (2g), 
a large and biologically important system. The INTC program 
generates a redundant set of coordinates which contain the 
five-membered ring coordinates (Figure 2) but does not exclude 
the six redundancies arising from closing the macrocycle. Con­
vergence is achieved in eight steps, which is quite good for such 
a large system, even with the C2„ symmetry which restricts the 
number of variables to 37. We used simple RHF theory here, 
but a correct description, particularly the assessment of the barrier 
at D2h symmetry, requires the use of a multiconfigurational wave 
function; these calculations are currently in progress. 

VIII. Empirical Correction of Bond Lengths by Offset Forces 
Hartree-Fock theory, although reasonably accurate for most 

organic systems, still falls short of the accuracy desired. In 
particular, with double-f or better basis sets, bond lengths are 
accurate only to a few hundredths of an angstrom.44 According 
to a detailed analysis by Hehre et al.,34 bond lengths between heavy 
(non-hydrogen) atoms have mean absolute errors between 0.015 
and 0.035 A, depending on the type of bond and the basis set used. 
To obtain better results, one has to resort either to higher levels 
of theory, or to empirical corrections. Correction of bond lengths 
is particularly important for the accurate calculation of vibrational 
frequencies. Due to strong anharmonicity, calculated harmonic 
stretching force constants are very sensitive to errors in the bond 
lengths;5 a simple estimate based on the Morse potential states 
that a difference of only 0.016 A in the bond length causes a 
change of 10% in the stretching force constant.45 

The accuracy of calculated bond lengths can be improved 
significantly empirically because the errors are quite systematic. 
Such corrections were first introduced by Blom and Altona;6 they 
were widely used in the MOCED (molecular orbital constrained 
electron diffraction) work of Schafer7 and in our vibrational 
studies.46 

We suggest here a scheme which is close to the above, but is 
more satisfactory theoretically. Rather than correcting the bond 
lengths after the optimization, we apply "offset forces" along the 
corresponding bond stretching coordinates throughout the opti­
mization. This has the advantage the the empirically modified 
potential surface is well-defined; it is the sum of the ab initio 
energy and a linear function in the bond stretchings. Of course, 
we assume here that the stretching coordinates are uniquely de-

(44) Pople, J. A. In Applications of Electronic Structure Theory; Schaefer, 
H. F., HI, Ed.; Plenum: New York, 1977; p 1. 

(45) Pulay, P.; Lee, J. G.; Boggs, J. E. J. Chem. Phys. 1983, 79, 3382. 
(46) (a) Corrections for basic bond types were suggested in ref 5. (b) For 

a survey, see also ref 8a. (c) For some recent applications, see also refs 8c 
and 8d. 

Table V. Offset Forces Used for the Empirical Correction of 
Hartree-Fock Geometries" 

offset force 

bond 

C - H 
N - H 
0—H 
C - C 
C+C(arom.) 
C = C 
C = C 
C - N 
C+N(arom) 
C = N 
C = N 
C - O 
C = O 
C - F 
C - C l 
( C - Sy 
( N = N ) ' 
N = C 

range6 (A) 

>1.42 
1.42-1.38 
1.38-1.28 
<1.28 
>1.35 
1.35-1.30 
1.30-1.20 
<1.20 
>1.30 
<1.30 

(>1.65) 
(1.25-1.15) 
1.25-1.20'' 

4-21G(*) 

+0.06 
+0.02 
-0.02 
-0.05 
+0.10 
+0.23 
+0.35 
+0.02 
+0.10 
+0.26 
+0.52 
+0.02 
+0.20 
+0.09 
-0.10 

(-0.05) 
(+0.4) 
+0.36 

6-31G* 

+0.04 
+0.07 
+0.09 

0.00 
+0.09 
+0.19 
+0.34 
+0.10 
+0.16 
+0.28 
+0.47 
+0.14 
+0.32 
+0.13 
-0.03 

(+0.4) 
+0.40 

0In aJ A"1. 'The range of bond length that defines the bond type. 
cPreliminary, tentative results. ''Only the narrow range of organic ni-
tro groups tested yet. 

fined. A linear correction can be justified by the empirical (and 
little appreciated) fact that near equilibrium the correlation energy 
is approximately a linear function of the bond distances.45 The 
present scheme removes the uncertainty2 which plagues force 
constants and harmonic frequencies calculated at nonequilibrium 
geometries; the second derivatives of the corrected potential surface 
are as well-defined as those of the original ab initio surface. 

It is difficult to improve bond angles empirically, and their error, 
often a degree or less for rigid molecules, is acceptable in many 
cases. The best strategy to improve bond angles is to use polarized 
basis sets, particularly on atoms with lone pairs. Accordingly, 
we use corrections for bond lengths only. 

Table V contains our recommended offset forces for some of 
the most important bonds in organic chemistry. A preliminary 
version of this table was published earlier.28 Because of its modest 
computing cost, we plan to use the 4-21G(*) basis: in the ideal 
case, after correction the results should be independent of the basis. 
Still, in some cases the 6-3IG* basis set may be necessary, and 
the offset forces were determined for both basis sets. The pro­
cedure was as follows. For each bond type a few basic molecules, 
for which the experimental geometries seemed reliable, were 
selected as references. From a gradient calculation in the ex­
perimental geometry, the offset force is the negative of the ab initio 
force along the bond. These were averaged for the group of 
reference molecules. Note that separate offset forces are used 
for single, aromatic, double, and triple bonds between the same 
atoms. This is at variance with our earlier procedure5 where a 
formula was used to give the correction (of bond length) as a 
function of the uncorrected bond length. The present scheme is 
simpler. It has, however, the disadvantage that it introduces 
discontinuities, and cannot be used, for example, in bond breaking 
cases; in such cases, of course, the simple Hartree-Fock wave 
function to which our corrections refer is inadequate anyway. A 
more important but fortunately infrequent problem is the pre­
diction of bond lengths which are intermediate, e.g., between the 
C—C and C=C bonds. We tried to chose the ranges for different 
bond types so that there are few bond lengths close to them. This 
difficulty would be eliminated by using an interpolation formula 
like that in ref 5 but at the cost of additional complexity in the 
geometry optimization. 

We have tested the suggested method on more than 60 organic 
molecules of various types, with the number of distinct bonds 
exceeding 200. Due to space limitations, only some illustrative 
examples are shown in Table VI. (The complete tabulation of 
results will be published separately.) It is thus not possible to 
discuss individual molecules. Instead, to show the overall per­
formance of empirical corrections, a statistical analysis is given 
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Table VI. Sample Examples of Calculated Bond Lengths 

bond 

C - C 

C-s-C (arom.) 

C = C 

C s C 

C - N 

C+N (arom.) 

C - O 

C = O 

molecule 

propane 
propene 
butadiene 
but-l-yne-3-one 
hexatriene 
acetaldehyde 
acetonitrile 
glyoxal 
cyclopropene 
benzaldehyde' 
phenylacetylene 
p-benzoquinone 

benzene 
1,3,5-trichlorobenzene 
pyrazine 
triphenylmethane'' 

propene 
butadiene 
but-l-yne-3-ene 
hexatriene 

C(D-CC) 
C(3)-C(4) 

allene 
ketene 
cyclopropene 
cyclopentadiene 
acrolein 
p-benzoquinone 

but-l-yne-3-ene 
cyanoacetylene 
phenylacetylene 

methylamine 
nitromethane 
nitrobenzene 

pyridine 
pyrazine 

dimethylether 
phenol 
o-chlorophenol 

acetaldehyde 
benzoic acid' 
salicylic acid' 
p-benzoquinone 

Obtained by Using Offset Forces as Empirical Corrections" 

without offset forces 

4-21G(*) 

1.541 
1.511 
1.470 
1.435 
1.465 
1.519 
1.466 
1.530 
1.524 
1.488 
1.438 
1.495 

1.384 
1.379 
1.383 
1.385 

1.314 
1.319 
1.319 

1.320 
1.325 
1.291 
1.302 
1.282 
1.327 
1.316 
1.318 

1.188 
1.185 
1.188 

1.475 
1.494 
1.467 

1.328 
1.326 

1.414 
1.366 
1.357 

1.193 
1.188 
1.208 
1.199 

6-31G* 

1.528 
1.503 
1.468 
1.439 
1.463 
1.504 
1.468 
1.517 
1.495 
1.483 
1.443 
1.489 

1.386 
1.382 
1.386 

1.318 
1.323 
1.322 

1.324 
1.329 
1.296 
1.306 
1.276 
1.329 
1.321 
1.323 

1.186 
1.185 
1.189 

1.453 
1.479 
1.459 

1.321 
1.319 

1.392 
1.353 
1.345 

1.188 
1.184 
1.202 
1.194 

with offset forces 

4-21G(*) 

1.528 
1.498 
1.457 
1.424 
1.452 
1.504 
1.455 
1.513 
1.512 
1.474 
1.445 
1.481 

1.396 
1.392 
1.394 
1.397 

1.336 
1.341 
1.341 

1.343 
1.350 
1.311 
1.323 
1.301 
1.353 
1.338 
1.341 

1.206 
1.204 
1.206 

1.478 
1.493 
1.461 

1.338 
1.336 

1.416 
1.368 
1.359 

1.206 
1.202 
1.223 
1.214 

6-31G* 

1.528 
1.501 
1.465 
1.437 
1.460 
1.509 
1.467 
1.511 
1.495 
1.478 
1.441 
1.485 

1.396 
1.393 
1.395 

1.336 
1.341 
1.340 

1.342 
1.349 
1.312 
1.322 
1.291 
1.348 
1.339 
1.342 

1.206 
1.203 
1.206 

1.472 
1.495 
1.469 

1.337 
1.335 

1.415 
1.372 
1.364 

1.209 
1.203 
1.225 
1.216 

Fogarasi et al. 

exptl* 

1.526 
1.501 
1.465 
1.434 
1.458 
1.501 
1.458 
1.527 
1.509 
1.476 
1.448 
1.481 

1.396 
1.392 
1.403 
1.403 

1.336 
1.345 
1.344 

1.337 
1.368 
1.308 
1.314 
1.296 
1.345 
1.345 
1.344 

1.215 
1.205 
1.208 

1.474 
1.490 
1.478 

1.338 
1.339 

1.415 
1.374 
1.37 

1.215 
(1.24) 
(1.241) 
1.225 

"AU values in angstroms. For the offset forces, see Table V. 'Unless otherwise indicated, all experimental data are taken from the Landolt-
Bornstein collection, ref 47. 'Experimental values from NMR results in liquid crystal solvent: Diehl, P.; Jokisaari, J.; Amrein, J. Org. Magn. Resort. 
1980, 13, 451. ''Average value is given, because only this is available experimentally; in the calculation, the individual CC bond lengths in a ring 
show a variation of up to 0.01 A. The 6-31G* calculation was not done because it would exhaust our disk capacity of ~ 1 GB. 'The experimental 
values in parentheses come from X-ray studies of the hydrogen-bonded dimers; benzoic acid: Sim, G. A.; Robertson, J. M.; Goodwin, T. H. Acta 
Crystallogr. 1955, 8, 157. Salicyclic Acid: Cochran, W. Acta Crystallogr. 1953, 6, 260. 

in Table VII. This is based on 129 bond lengths, those for which 
experimental data on the free molecule are available (taken from 
ref 47). One factor limiting the comparison is the uncertainty 
of the experimental values. These arise partly from measuring 
errors but mostly from vibrational effects. Even microwave 
substitution (rs) structures, normally assumed to be close to the 
equilibrium values, may occasionally exhibit large errors.48 In 
general, for distances between non-hydrogen atoms, the mean error 
in the experimental bond lengths is probably near or slightly below 
0.01 A. In light of this, the corrections work very satisfactorily: 

(47) Landolt-Bornstein, Zahlenwerte und Funktionen aus Naturwissen-
schaften und Technik (Numerical Data and Functional Relationships in 
Science and Technology); Neue Serie; Madelung, O., Ed.; Group II, Vol. 15: 
Structure Data of Free Polyatomic Molecules; Callomon, J. H., Hirota, E., 
Iijima, T.; Kuchitsu, K., Lafferty, W. J., Eds.; Group II, Vol. 7: Structure 
Data of Free Polyatomic Molecules, Callomon, J. H., Hirota, E., Kuchitsu, 
K., Lafferty, W. J., Maki, A. G, Pote, S. S., Eds.; Springer-Verlag: Berlin-
Heidelberg, 1987. 

(48) Boggs, J. E.; Altman, M.; Cordell, F. R.; Dai, Y. THEOCHEM1983, 
//, 373. 

as seen in the first row of Table VII, the mean absolute error goes 
down from 0.014 to 0.005 A. The number of deviations exceeding 
a given limit is also shown. At the 0.02-A level, there is no 
discrepancy for the 4-21 G(*) basis and only one for the 6-3IG* 
basis. The latter discrepancy was found in 1,2-cyclobutanedione, 
where the C-C bond distance between the two carbonyl groups 
comes out too short: 1.551 A as compared to the experimental 
value of 1.574 A. (Surprisingly, the 4-21(*) result is 1.577 A, 
in good agreement with experiment.) In any case, this one single 
discrepancy should be compared to the more than 30 discrepancies 
without corrections. Using a stricter criterion, there are still only 
five cases of deviations larger than 0.015 A. Because of the 
experimental uncertainty in the bond lengths, the last row of Table 
VII is hardly significant and was added only to complete the 
statistics. 

The last column of Table VII gives information about the 
internal consistency of the theoretical results: while two different 
basis sets give, of course, considerable differences in the calculated 
bond lengths, these differences should be largely eliminated by 
the empirical corrections. This requirement is fairly but not 
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Table VII. Statistical Analysis of the Results on Bond Lengths" 
theoret vs exptl 

without offset forces with offset forces t h e o r e t ys t h e o r e t 4 

property 4-21G(») 6-31G* 4-21G(») 6-31G* 6-31G* - 4-21GQ 
mean absolute error 0.014 0.014 0.005 0.005 0.003 
maximum deviation 0.043 0.039 0.018 0.023 0.026 
number of deviations larger than 

A = 0.020 31 35 0 1 1 
A = 0.015 49 55 5 5 3 
A = 0.010 88 76 17 14 7 

"Bond lengths in angstroms. Based on 129 data points of which some examples are listed in Table VI. See also the text. * Using the offset forces 
corrections. 

completely satisfied: while the mean deviation is only 0.003 A, 
there are seven deviations exceeding 0.01 A, with three of them 
above 0.015 A and the maximum deviation is 0.026 A. (The latter 
is the C-C bond in cyclobutanedione discussed above.) 

Although the corrected bond distances show excellent overall 
agreement with experiment, it is evident that a simple empirical 
correction has limitations, mainly for strongly strained systems 
and for conjugated systems where nondynamical correlation effects 
are present. This is clearly indicated by the fact that, beyond 
cyclobutanedione, the rest of the larger deviations (those exceeding 
0.015 A) were found in the following molecules: glyoxal, hexa-
triene, cyclopropene, aziridine, and nitrobenzene. It should also 
be noted that virtually all the bonds investigated were of the type 
where one of the atoms is carbon; the method may work slightly 
less well for some less common bonds. The latter are, fortunately, 
less important in organic chemistry. Perhaps the weakest point 
of our procedure is the discontinuity in the corrections discussed 
above. For example, when going from a single C—C bond to a 
C=C double bond there is a sudden change in the offset force 
used as correction (Table V). In most cases of well isolated bonds 
this presents no problem. However, we realize that there is some 
uncertainty, especially in conjugated ^--systems. In the present 
study we calculated these offset forces from butadiene to octa-
tetrene where the bonds can still be easily classified as single or 
double bonds and the empirical correction works satisfactorily. 
In more strongly correlated systems a uniform correction, like in 
aromatics, may work better. Ultimately, however, one may be 
forced to use higher levels of theory. We are experimenting with 
the MCSCF type UNO-CAS42 method. 

In contrast to previous schemes, the present procedure has a 
new feature that should be kept in mind: an offset force along 
any given bond affects all other geometrical parameters. Since 
couplings between stretchings and bendings are quite significant, 
incorrect bond distances lead to further errors in bond angles. 
Thus, we expect that the use of offset forces to improve bond 
lengths will lead to improvements in the angles too. This should 
be more significant for the 6-31G* basis, which reproduces the 
bond angles much better than the 4-21G(*) basis. We have 
investigated this on several bond angles, and a compilation of 
results is available upon request. The changes caused by the offset 
forces in the angles are of the order of a few tenths of a degree. 
The largest change was found for the C-O-H angle in methanol, 
where the 6-31G* value changed from 109.5° to 108.8° (the 
experimental value is 108.0°47). The basic conclusion is that the 
changes in angles are not very significant but seem to point in 
the right direction. 

IX. Conclusions 
We have demonstrated by numerous examples that an appro­

priately defined system of internal coordinates, which we call 
natural coordinates, can greatly accelerate the convergence of 
geometry optimizations. The essence of this method is that by 
using natural coordinates structural information is built into the 
procedure and couplings, both harmonic and higher order, are 
reduced. The time-consuming construction of the internal co­
ordinates has been automated and is included in our program 
system TX90. By interfacing the latter to PCMODEL, a com­
mercial molecular graphics and force field program, the generation 
of the input for the ab initio program is greatly simplified. 
Convergence of the geometry for organic molecules is typically 
achieved in 8-15 steps, even for systems with over 100 degrees 
of freedom, using a simple diagonal guess of the force field and 
the GDIIS optimization technique. Because higher order couplings 
are small in natural coordinates, this system is better than 
Cartesian coordinates even if a good initial Hessian is available. 
We have compared the efficiency of geometry optimization in 
natural internal coordinates with that in Cartesian coordinates 
and found significant improvement in the rate of convergence, 
particularly in molecules with soft degrees of freedom. 

Although our natural coordinates are nonredundant in most 
cases, in complex polycyclic systems redundant coordinates are 
difficult to avoid. We have demonstrated that, contrary to the 
accepted view, geometry optimization can easily be generalized 
to handle redundant coordinates. 

To increase the accuracy of ab initio geometries, we have 
introduced empirical corrections in form of 'offset forces' along 
bond lengths. We have compared 130 experimental bond lengths 
with the corresponding Hartree-Fock values obtained using two 
basis sets, 4-21G(*) and 6-31G*. Although empirical correction 
schemes have obvious limitations, the offset forces reduce the 
average error in normal bonding situations from 0.014 to 0.005 
A for both basis sets. 

Both the efficient geometry optimization method developed here 
and the empirical correction of bond lengths represent the first 
step toward a major project of large-scale vibrational frequency 
calculations started in this laboratory recently.28 The final goal 
of this project is to build a data base of accurate geometries and 
force constants. 
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